Понятие, история открытия, структура и роль комплекса Гольджи

Аппарат Гольджи, также называемый комплексом Гольджи — органелла встречающаяся, как в клетках растений, так и животных, и обычно состоит из совокупности чашеобразных отделов с мембраной, называемых цистернами, которые выглядят как стопка сдутых воздушных шаров.

Однако у некоторых одноклеточных жгутиковых имеется 60 цистерн, формирующих аппарат Гольджи. Точно так же количество стопок комплекса Гольджи в клетке изменяется в зависимости от ее функций. Клетки животных, как правило, содержат от 10 до 20 стопок на одну клетку, объединенных в один комплекс трубчатыми соединениями между цистернами. Аппарат Гольджи обычно расположен близко к ядру клетки.

Строение комплекса Гольджи

В пластинчатом комплексе (аппарат Гольджи) имеется три части:

  • Цис-цистерна — находится вблизи ядра, постоянно взаимодействует с гранулярной эндоплазматической сетью;
  • медиал-цистерна или промежуточная часть;
  • транс-цистерна — отдаленная от ядра, дает трубчатые разветвления, формируя транс-сеть Гольджи.

Пластинчатый комплекс в клетках разной природы и даже на различных этапах дифференцировки одной клетки, иногда имеет отличительные черты в строении.

Строение аппарата ГольджиСтроение аппарата Гольджи

Основные функции

Важными характеристиками комплекса Гольджи являются передача белков в соответствии с их назначением, а также их гликозилирование, дегликозилирование и трансформация олигосахаридных цепей. Аппарат характеризуется гладкой активной анизотропией. Возобновлённые синтезированные белки транспортируются из ретикулума к полюсам с поддержкой везикул. После этого они постепенно перемещаются, претерпевая схему преобразования (состав ферментных систем может встречаться, изменяется в резервуарах при их удалении из ядра). В конце белки попадают в место назначения.

Гольджи гарантирует открытие транспортировки белка в таких частях:

  • лизосомах (в центральной вакуоли клеток растений и простейших);
  • клеточной мембране и межклеточном пространстве. Цель движения белка определяется специальными гликозидными маркерами.

Основные функции комплекса Гольджи

Созревание и транспортировка митохондриальных, ядерных и хлоропластных белков происходит без Гольджи: они могут отсутствовать и синтезируются свободными рибосомами, после этого попадают в цитозоль.

Конкретное значение

Значение Гольджи большое — он гарантирует синтез и превращение углеводного компонента в гликопротеины, протеогликаны и гликолипиды. Он также синтезирует большое количество полисахаридов, таких как пектины в растениях. Органоид Гольджи имеет большое количество различных гликозилтрансфераз и гликозидаз.

Устройство содержит 3 значимых функции в биологии:

  • миграция и модификация белка;
  • создание и трансформация полисахаридов и липидов;
  • создание лизосом.

Секреция Гольджи не до конца понятна биологам. Основной функцией синтеза органелл является секретность, которая затем передаётся. Большинство из них имеют своё происхождение, и в результате этого Гольджи обрабатывает первичные незрелые белки. Структура этого состояния и функция процесса транспорта белка во всех областях не совсем ясны.

Аппарат Гольджи производит гликолипиды. Они обнаруживаются в нервной ткани и клеточных мембранах. Комплекс участвует в накоплении веществ, синтезируемых в эндоплазматической сети, в их химической перестройке и созревании.

В гранулярных резервуарах полисахариды синтезируются и включаются в молекулы белка. Одной из ведущих функций является формирование готовых секреторных продуктов, которые удаляются из клетки методом экзоцитоза.

Важными функциями аппарата для клетки считается обновление мембран, которое уменьшает количество срезов плазматической части и заменяет недостатки в выделении секреторной энергии клетки. Гольджи является источником лизосом, но их ферменты проводят синтез в гранулированной сети.

Аппарат Гольджи (видео)


Понятие, история открытия, структура и роль комплекса Гольджи

Автор: Павел Чайка, главный редактор журнала Познавайка

Страница про автора

Эта статья доступна на английском языке – Golgi Apparatus (Golgi Complex).

  • Биология

Энергетический переход

Лизосомы — небольшие пузырьки

Лизосомы — небольшие пузырьки, окруженные одной мембраной. Они изолированы и могут находиться у аппарата Гольджи и эндоплазматического ретикулума. Лизосомы содержат большое количество ферментов, расщепляющих молекулы, в частности, белок. Из-за их личного разрушительного воздействия они блокируются и высвобождаются только при необходимости.

Таким образом, во время внутриклеточного пищеварения ферменты высвобождаются из лизосом в вакуоли. Они связаны с клетками, например, при реинкарнации животных. Иногда это изменение в клетках является патологическим.

Лизосомы включают внутриклеточные секреторные вакуоли, заполненные гидролитическими ферментами, связанными с фагом и аутофагоцитозом. На светооптическом уровне у них есть все возможности для выявления в соответствии со степенью их образования в клетке по энергии гистохимической реакции с кислой фосфатазой, ведущим лизосомальным ферментом. В микроскопии лизосомы ограничены мембраной гиалоплазмы.

Разновидности лизосом

Обычно выделяют 4 вида лизосом:

  • первичный;
  • вторичный;
  • аутофагосомный;
  • остаточный.

Первичные лизосомы

Первичные лизосомы подразумевают незначительные диафрагменные везикулы (их обычный поперечник располагается в границах 100 Нм), наполненные однородным веществом, что представляет собой комплект гидролитических ферментов. Лизосомы были выявлены в 40 частицах (протеазы, нуклеазы, гликозидазы, фосфорилазы, сульфатазы и т. д. ), чей положительный метод воздействия, рассчитанный на кислую сферу рН 5. Их мембраны включают особые белки-носители для транспорта элементов и гидролитического расщепления — аминокислот, сахаров и нуклеотидов в гиалоплазме и устойчивы к гидролитическим ферментам.

Вторичные лизосомы возникают посредством слияния первичных вакуолей с эндоцитозом либо пиноцитозом. В иных частях они вводят внутриклеточные пептические вакуоли, ферменты которых поставляются. Вид второстепенных лизосом достаточно многообразен и варьируется в зависимости от гидролитического содержания.

Ферменты лизосомы расщепляют биопрепараты, прибывающие в клетку, и это приводит к формированию мономеров, что транспортируются через пленку лизосомы в гиалоплазму, где они применяются либо совмещаются с разными реакциями синтеза и метаболизма. При помощи начальных лизосом и гидролитическом расщеплении их ферменты оказывают большое влияние на единичные клеточные текстуры (стареющие органеллы, соединения и т. д. ).

Аутофагоцитоз представляется непосредственным подходом к клеточной жизни и играет существенную роль в обновлении ее строений, во внутриклеточной регенерации. Оставшийся белок представляется одним из минувших рубежей жизни фага и аутолизосом и располагается в стадии неполноценного аутофагоцитоза, после чего он освобождается из клеточки экзоцитоза. Они уплотняются, и часто происходит повторное структурообразование непереваренных сочетаний (например, липиды содействуют освобождению непростых расслоенных образований).

Митохондрии

1 — наружная мембрана;
2 — внутренняя мембрана; 3 — матрикс; 4 — криста; 5 — мультиферментная система; 6 — кольцевая ДНК.

Форма, размеры и количество митохондрий чрезвычайно варьируют. По форме митохондрии могут быть палочковидными, округлыми, спиральными, чашевидными, разветвленными. Длина митохондрий колеблется в пределах от 1,5 до 10 мкм, диаметр — от 0,25 до 1,00 мкм. Количество митохондрий в клетке может достигать нескольких тысяч и зависит от метаболической активности клетки.

Митохондрия ограничена двумя мембранами. Наружная мембрана митохондрий (1) гладкая, внутренняя (2) образует многочисленные складки — кристы (4). Кристы увеличивают площадь поверхности внутренней мембраны, на которой размещаются мультиферментные системы (5), участвующие в процессах синтеза молекул АТФ. Внутреннее пространство митохондрий заполнено матриксом (3). В матриксе содержатся кольцевая ДНК (6), специфические иРНК, рибосомы прокариотического типа (70S-типа), ферменты цикла Кребса.

Митохондриальная ДНК не связана с белками («голая»), прикреплена к внутренней мембране митохондрии и несет информацию о строении примерно 30 белков. Для построения митохондрии требуется гораздо больше белков, поэтому информация о большинстве митохондриальных белков содержится в ядерной ДНК, и эти белки синтезируются в цитоплазме клетки. Митохондрии способны автономно размножаться путем деления надвое. Между наружной и внутренней мембранами находится протонный резервуар, где происходит накопление Н + .

Функции митохондрий: 1) синтез АТФ, 2) кислородное расщепление органических веществ.

Согласно одной из гипотез (теория симбиогенеза) митохондрии произошли от древних свободноживущих аэробных прокариотических организмов, которые, случайно проникнув в клетку-хозяина, затем образовали с ней взаимовыгодный симбиотический комплекс. В пользу этой гипотезы свидетельствуют следующие данные. Во-первых, митохондриальная ДНК имеет такие же особенности строения как и ДНК современных бактерий (замкнута в кольцо, не связана с белками). Во-вторых, митохондриальные рибосомы и рибосомы бактерий относятся к одному типу — 70S-типу. В-третьих, механизм деления митохондрий сходен с таковым бактерий. В-четвертых, синтез митохондриальных и бактериальных белков подавляется одинаковыми антибиотиками.

Пластиды

1 — наружная мембрана; 2 — внутренняя мембрана; 3 — строма; 4 — тилакоид; 5 — грана; 6 — ламеллы; 7 — зерна крахмала; 8 — липидные капли.

Пластиды характерны только для растительных клеток. Различают три основных типа пластид: лейкопласты — бесцветные пластиды в клетках неокрашенных частей растений, хромопласты — окрашенные пластиды обычно желтого, красного и оранжевого цветов, хлоропласты — зеленые пластиды.

Хлоропласты. В клетках высших растений хлоропласты имеют форму двояковыпуклой линзы. Длина хлоропластов колеблется в пределах от 5 до 10 мкм, диаметр — от 2 до 4 мкм. Хлоропласты ограничены двумя мембранами. Наружная мембрана (1) гладкая, внутренняя (2) имеет сложную складчатую структуру. Наименьшая складка называется тилакоидом (4). Группа тилакоидов, уложенных наподобие стопки монет, называется граной (5). В хлоропласте содержится в среднем 40-60 гран, расположенных в шахматном порядке. Граны связываются друг с другом уплощенными каналами — ламеллами (6). В мембраны тилакоидов встроены фотосинтетические пигменты и ферменты, обеспечивающие синтез АТФ. Главным фотосинтетическим пигментом является хлорофилл, который и обусловливает зеленый цвет хлоропластов.

Внутреннее пространство хлоропластов заполнено стромой (3). В строме имеются кольцевая «голая» ДНК, рибосомы 70S-типа, ферменты цикла Кальвина, зерна крахмала (7). Внутри каждого тилакоида находится протонный резервуар, происходит накопление Н + . Хлоропласты, также как митохондрии, способны к автономному размножению путем деления надвое. Они содержатся в клетках зеленых частей высших растений, особенно много хлоропластов в листьях и зеленых плодах. Хлоропласты низших растений называют хроматофорами.

Функция хлоропластов: фотосинтез. Полагают, что хлоропласты произошли от древних эндосимбиотических цианобактерий (теория симбиогенеза). Основанием для такого предположения является сходство хлоропластов и современных бактерий по ряду признаков (кольцевая, «голая» ДНК, рибосомы 70S-типа, способ размножения).

Лейкопласты. Форма варьирует (шаровидные, округлые, чашевидные и др.). Лейкопласты ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя образует малочисленные тилакоиды. В строме имеются кольцевая «голая» ДНК, рибосомы 70S-типа, ферменты синтеза и гидролиза запасных питательных веществ. Пигменты отсутствуют. Особенно много лейкопластов имеют клетки подземных органов растения (корни, клубни, корневища и др.). Функция лейкопластов: синтез, накопление и хранение запасных питательных веществ. Амилопласты — лейкопласты, которые синтезируют и накапливают крахмал, элайопласты — масла, протеинопласты — белки. В одном и том же лейкопласте могут накапливаться разные вещества.

Хромопласты. Ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя или также гладкая, или образует единичные тилакоиды. В строме имеются кольцевая ДНК и пигменты — каротиноиды, придающие хромопластам желтую, красную или оранжевую окраску. Форма накопления пигментов различная: в виде кристаллов, растворены в липидных каплях (8) и др. Содержатся в клетках зрелых плодов, лепестков, осенних листьев, редко — корнеплодов. Хромопласты считаются конечной стадией развития пластид.

Функция хромопластов: окрашивание цветов и плодов и тем самым привлечение опылителей и распространителей семян.

Все виды пластид могут образовываться из пропластид. Пропластиды — мелкие органоиды, содержащиеся в меристематических тканях. Поскольку пластиды имеют общее происхождение, между ними возможны взаимопревращения. Лейкопласты могут превращаться в хлоропласты (позеленение клубней картофеля на свету), хлоропласты — в хромопласты (пожелтение листьев и покраснение плодов). Превращение хромопластов в лейкопласты или хлоропласты считается невозможным.

Рибосомы

1 — большая субъединица; 2 — малая субъединица.

Рибосомы — немембранные органоиды, диаметр примерно 20 нм. Рибосомы состоят из двух субъединиц — большой и малой, на которые могут диссоциировать. Химический состав рибосом — белки и рРНК. Молекулы рРНК составляют 50-63% массы рибосомы и образуют ее структурный каркас. Различают два типа рибосом: 1) эукариотические (с константами седиментации целой рибосомы — 80S, малой субъединицы — 40S, большой — 60S) и 2) прокариотические (соответственно 70S, 30S, 50S).

В составе рибосом эукариотического типа 4 молекулы рРНК и около 100 молекул белка, прокариотического типа — 3 молекулы рРНК и около 55 молекул белка. Во время биосинтеза белка рибосомы могут «работать» поодиночке или объединяться в комплексы — полирибосомы (полисомы). В таких комплексах они связаны друг с другом одной молекулой иРНК. Прокариотические клетки имеют рибосомы только 70S-типа. Эукариотические клетки имеют рибосомы как 80S-типа (шероховатые мембраны ЭПС, цитоплазма), так и 70S-типа (митохондрии, хлоропласты).

Субъединицы рибосомы эукариот образуются в ядрышке. Объединение субъединиц в целую рибосому происходит в цитоплазме, как правило, во время биосинтеза белка.

Функция рибосом: сборка полипептидной цепочки (синтез белка).

Биохимическая организация

Пассивная компартментализация предполагает лишь только временную изоляцию сильных гидролаз в деликатных мембранных мешках. Ферментативная инактивация достигается почти всеми причинами. Первым из их считается поддержание рН среды, не соответствующей хорошей энергичности ферментов. Не считая того, что в пределах 20% их вводится в мембрану лизосом и пока что инактивируются в ней путём объединения с липидами, другие 80% не внедряются в мембрану, но присутствуют в мукополисахаридной матрице лизосом, а сами молекулы фермента снабжаются углеводными компонентами (гликозилированными).

Пассивная компартментализация

Строение и функции комплекса Гольджи считаются довольно актуальными для поддержания обычной жизнедеятельности клетки растительных и иных организмов различного класса. Любая доля аппарата отвечает за определённую функцию, вследствие этого целый корпус функционирует плавно. Гольджи отвечает за определение общего синтеза сложных соединений широкого диапазона (например, молекул иммуноглобулина, протеогликанов, своеобразных структур плоскости и рецепторов и т. д. ).

Органоиды движения

Присутствуют не во всех клетках. К органоидам движения относятся реснички (инфузории, эпителий дыхательных путей), жгутики (жгутиконосцы, сперматозоиды), ложноножки (корненожки, лейкоциты), миофибриллы (мышечные клетки) и др.

Жгутики и реснички — органоиды нитевидной формы, представляют собой аксонему, ограниченную мембраной. Аксонема — цилиндрическая структура; стенка цилиндра образована девятью парами микротрубочек, в его центре находятся две одиночные микротрубочки. В основании аксонемы находятся базальные тельца, представленные двумя взаимно перпендикулярными центриолями (каждое базальное тельце состоит из девяти триплетов микротрубочек, в его центре микротрубочек нет). Длина жгутика достигает 150 мкм, реснички в несколько раз короче.

Миофибриллы состоят из актиновых и миозиновых миофиламентов, обеспечивающих сокращение мышечных клеток.

    Перейти к лекции №6 «Эукариотическая клетка: цитоплазма, клеточная оболочка, строение и функции клеточных мембран»

Комплекс или аппарат Гольджи был открыт в 1898 году Камилло Гольджи. Сам аппарат – это полиморфная, асимметричная структура в составе клетки, представляющая собой дискообразные цистерны, уложенные в виде стопок. С этими цистернами связано еще другое образование – пузырьки Гольджи, которые подходят к цистернам и сливаются с ними. Затем в другом отделе пузырьки отпочковываются от комплекса. Пузырьки иначе называют везикулами.

В растительных и животных клетках анатомически аппарат Гольджи выглядит по-разному:

  • В животных клетках представлена одна большая стопка цистерн, иногда несколько стопок цистерн, соединенных трубкообразными структурами;
  • В растительных клетках он представлен так называемыми диктиосомами. Диктиосомы – это обособленные комплексы стопок цистерн с пузырьками-везикулами. Диктиосомы представлены не только в растительных клетках, но и в клетках ряда простейших беспозвоночных. В диктиосомах вырабатываются полисахаридные комплексы, которые участвуют в построение клеточных стенок растений. Некоторые ученые считают, что диктиосомы имеют функцию также в построение вакуолей. Они утверждают, что вакуоли формируют путем разбухания межмембранного пространства самих диктиосом. Известно, что вакуоль в растительной клетке занимает большую ее часть.

Строение аппарата условно можно поделить на три отдела:

  • Цис-отдел – асимметричный начальный отдел с незрелым белком.
  • Средний отдел. Иначе его еще называют медиальным отделом.
  • Транс-отдел. Это отдел с вызревшим протеиновым комплексом. Здесь формируются и отходят пузырьки, несущие уже вполне сформированные зрелые протеины.

Транспорт веществ из ЭПС

Аппарат Гольджи осуществляет функцию транспорта веществ из эндоплазматической сети. Асимметричная часть аппарата находится ближе к ядру и содержит незрелые белки. Сюда регулярно подходят пузырьки. Поступление белков из эндоплазматической сети в аппарат, проходи не очень избирательно, но белки с неправильной структурой в аппарат не проникают.

При наличии специальной сигнальной аминокислотной последовательности происходит обратный транспорт белков из аппарата в ЭПС.

Преобразование белков

В мешочках комплекса Гольджи осуществляется функция преобразования протеинов. Здесь вызревают белки для секреции, трансмембранные и комплексы, входящие в состав лизосом.

Стопки цистерн содержат разный набор ферментов, которые катализируют процессы преобразования белков: белки переходят из одной цистерны в другую и подвергаются различного рода ферментно-каталитическому преобразованию. Каким образом осуществляется переход белков из одной цистерны в другую до конца не выяснено. Это представляет собой предмет изучения биохимии. Здесь протекают сложнейшие химические реакции с участием рецепторов.

Пройдя систему цистерн аппарата, белок попадает в транс-отдел. От него начинают постепенно отделяться пузырьки, наполненные сформированным белком. Нужно сказать, что каждый белок транспортируется к той органелле, для которой он был создан. В аппарате гольджи белки приобретают своеобразную метку рецепторов, благодаря которым транспортная система распознает белок и передает его в то место назначения, для которого он был создан.

Условно транс-отдел вырабатывает белки трех направлений:

  • Лизосомные ферменты – это группа веществ, которые направляются в лизосомы.
  • Белки для строительства мембраны.
  • Секреты.

Сводная таблица функций комплекса Гольджи

Структурная единица

Функции

Цис-цистерна Захват синтезированных ЭПС белков, мембранных липидов
Срединные цистерны Посттрансляционные модификации связанные с переносом ацетилглюкозамина.
Транс-цистерна Завершается гликозилирование, присоединение галактозы и сиаловой кислоты, идет сортировка веществ для дальнейшего транспорта из клетки.
Пузырьки Отвечают за перенос липидов, белков в аппарат Гольджи и между цистернами, а также за выведение продуктов синтеза.

Эпс, ее разновидности, роль в процессах синтеза веществ.

Эндоплазматическаясетьв разных клетках может быть представленав форме уплощенных цистерн, канальцевили отдельных везикул. Стенка этихобразований состоит из билипидноймембраны и включенных в нее некоторыхбелков и отграничивает внутреннюю средуэндоплазматической сети от гиалоплазмы.

Различаютдве разновидности эндоплазматическойсети:

    зернистая (гранулярная или шероховатая);

    незернистая или гладкая.

Нанаружной поверхности мембран зернистойэндоплазматической сети содержатсяприкрепленные рибосомы. В цитоплазмемогут быть обе разновидностиэндоплазматической сети, но обычнопреобладает одна форма, что и обуславливаетфункциональную специфичность клетки.Следует помнить, что названные дверазновидности являются не самостоятельнымиформами эндоплазматической сети, таккак можно проследить переход зернистойэндоплазматической сети в гладкую инаоборот.

Функциизернистой эндоплазматической сети:

    синтез белков, предназначенных для выведения из клетки («на экспорт»);

    отделение (сегрегация) синтезированного продукта от гиалоплазмы;

    конденсация и модификация синтезированного белка;

    транспорт синтезированных продуктов в цистерны пластинчатого комплекса или непосредственно из клетки;

    синтез билипидных мембран.

Гладкаяэндоплазматическая сеть представленацистернами, более широкими каналами иотдельными везикулами, на внешнейповерхности которых отсутствуютрибосомы.

Функциигладкой эндоплазматической сети:

    участие в синтезе гликогена;

    синтез липидов;

    дезинтоксикационная функция — нейтрализация токсических веществ, посредством соединения их с другими веществами.

Пластинчатыйкомплекс Гольджи (сетчатый аппарат)представлен скоплением уплощенныхцистерн и небольших везикул, ограниченныхбилипидной мембраной. Пластинчатыйкомплекс подразделяется на субъединицы- диктиосомы. Каждая диктиосомапредставляет собой стопку уплощенныхцистерн, по периферии которых локализуютсямелкие пузырьки. При этом, в каждойуплощенной цистерне периферическаячасть несколько расширена, а центральнаясужена.

В 1898 году итальянский учёный Камилло Гольджи обнаружил важную органеллу клетки, которая впоследствии была названа его именем. Строение и функции комплекса Гольджи важны для нормальной жизнедеятельности самой клетки и всего организма.

Значение

Органоид выполняет три важных функции:

  • перенос и преобразование белков;
  • формирование и модификация полисахаридов и липидов;
  • производство лизосом.

Работа комплекса Гольджи не до конца понятна биологам. Главная функция органеллы — синтез секретов, которые в дальнейшем транспортируются наружу. Большинство секретов имеют белковое происхождение, поэтому комплекс Гольджи перерабатывает первичные, незрелые белки, отделившиеся от ЭПС, в готовые секреты. Механизм этого преображения и особенности процесс транспортировки белков через все отделы до конца не ясны.

ТОП-4 статьикоторые читают вместе с этой

Аппарат Гольджи производит гликолипиды — сложные соединения, образованные углеводами и жирами. Основу веществ составляют полисахариды, к которым прикрепляются остатки жирных кислот. Гликолипиды входят в состав нервных тканей и клеточных мембран.

Понятие, история открытия, структура и роль комплекса Гольджи

Рис. 2. Гликолипиды.

Третья важная функция — производство лизосом. Они также «изготовляются» из белков ЭПС. Аппарат Гольджи формирует первичные лизосомы — органеллы, напоминающие пузырёк или везикулу. Снаружи лизосома ограничена тонкой мембраной, внутри находятся ферменты, расщепляющие органические вещества, которые поступают снаружи или производятся клеткой (продукты жизнедеятельности). Отделившиеся от комплекса Гольджи первичные лизосомы сливаются в цитоплазме с твёрдыми или жидкими веществами, превращаясь во вторичные лизосомы, которые выполняют функцию переваривания.

Понятие, история открытия, структура и роль комплекса Гольджи

Рис. 3. Процесс образования лизосом.

Комплекс Гольджи наиболее развит в клетках, выделяющих различные секреты.


Поделитесь в соц.сетях:

Оцените статью:

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (Пока оценок нет)
Загрузка...

Добавить комментарий