Гаплоидные клетки: процесс образование и количество хромосом

Гаплоидная клетка представляет собой клетку, которая содержит одинарный набор хромосом, к примеру, гаметы (половые клетки) являются гаплоидными клетками, образованные делением посредством мейоза.

Содержание

Типы гаплоидных клеток

В основном гаплоидные клетки называют гаметами или клетками, через которые осуществляется процесс полового размножения. Кроме того, гаплоидный набор хромосом характерен для прокариотических (безъядерных) организмов. Все соматические клетки эукариот (ядерных) организмов имеют диплоидный набор хромосом.

Гаплоидная прокариотическая клетка обладает следующими особенностями:

  • отсутствие мембранных органоидов;
  • наличие муреиновой клеточной стенки (углеводной);
  • наличие рибосом и мембраны с двумя слоями липидов.

Также прокариотические клетки могут образовывать капсулы для того, чтобы пережить неблагоприятные условия окружающей среды и сохранить после этого жизнеспособность. Хромосомы прокариотических клеток свободно плавают в цитоплазме и не защищаются никакими структурами. Чаще всего наследственный материал прокариот находится в виде одной кольцевой ДНК или нуклеоида.

Прокариотические клетки чаще всего проявляют свои свойства в полной мере, попадая в организм хозяина и реализуя свой обмен веществ внутри обмена веществ другого организма.

Прокариотические клетки размножаются простым делением пополам, что позволяет им размножаться достаточно быстро и эффективно. Клетки эукариот также могут обладать одинарным набором хромосом. Эти клетки отличаются от соматических и реализуют процесс полового размножения. Половое размножение может происходит только при слиянии двух гамет, которые синтезируются особями одного и того же вида, но противоположного пола. После слияния двух половых клеток в процессе оплодотворения образуется зигота, которая уже будет обладать двойным набором хромосом. Половые клетки эукариот называются яйцеклетками и сперматозоидами.

История открытия хромосом

Классическая биология подразумевает, что открытие хромосомы неразрывно связано с открытиями клетки и ядра. Все находки стали возможными только после изобретения микроскопа Левенгуком в 1674 году.

Хромосома количество, строение, функции, типы

В 1831 году Роберт Браун первым определил, что в клетках растений есть клеточное ядро. Он опубликовал множество научных трудов по этому вопросу.

В 1838 М. Дж. Шлейдена выдвинул неверную эпигенетическую теорию. Она утверждает, что клеточное ядро создается из жидкости клетки. Это послужило классической противоположностью открытию Эдуарда ван Бенедена в 1883 году, что нитевидные молекулы – это отдельные объекты.

В 1842 году Карл Вильгельм фон Нагели обнаружил субклеточные структуры. Он наблюдал «идиоплазму», сеть струноподобных тел. Ученый ошибочно предполагал, что они образуют взаимосвязанную сеть во всем организме.

В 1873 году Шнайдер описал косвенное деление ядра с помощью «Kernfigur» (ядерная фигура) и «ахроматического веретена». В 1883 году Эдуард ван Бенеден обнаружил, что после оплодотворения половых клеток нематоды Ascaris megalocephala не сливаются с нитевидными молекулами ядра ооцита. Следовательно, они являются отдельными сущностями.

Правила Менделя были основаны на суждениях Бенедена, но эта связь была обнаружена только через несколько лет.

Определение «хромосома» было придумано Уолдиером в 1888 году. Термин происходит от греческих слов «цвет» и «тело». Термин имеет такое название, потому что хромосома обладает способностью окрашиваться красителями.

А уже в 1960 году была создана первая Денверская международная классификация, которая помогает в построении кариограммы человека — совокупности всех хромосом диплоидного набора клетки.

Функции гаплоидных клеток эукариот

Определение 2

Яйцеклетки – это женские гаметы, несущие информацию о материнском организме.

Сперматозоиды – это мужские гаметы, несущие информацию об отцовском организме.

Сперматозоид. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Сперматозоид. Автор24 — интернет-биржа студенческих работ

Яйцеклетки вырабатываются в организме самок в яичниках. Сперматозоиды продуцируются организмом самцов в семенниках. Что касается женских половых клеток, то они неподвижны и обладают большими размерами, по сравнению с мужскими половыми клетками. Основная задача половой клетки женского типа заключается в обеспечении будущей зиготы питательными веществами на раннем этапе развития. В состав яйцеклеток входят:

  • цитоплазма;
  • мембрана, студенистая оболочка, полярное тельце;
  • ядро.

Кроме того, внутри яйцеклеток присутствуют кортикальные гранулы, содержащие ферменты, которые не дают сперматозоидами попадать в яйцеклетку уже после оплодотворения. Это необходимо потому, что в противном случае может произойти полиплоидия и увеличиться количество мутаций. Яйцеклетки сохраняют питательные вещества и дают возможность обеспечить будущее полноценное развитие дочернего организма, особенно в эмбриональном периоде онтогенеза.

Сперматозоиды в свою очередь сперматозоид сохраняет и передает наследственный материал от отцовского источника. Подобная гаплоидная клетка обладает минимальными размерами, и не содержит питательных веществ, но имеет гаплоидное ядро. Сперматозоид состоит из: хвоста, головки, и промежуточного между ними отдела. Хвостик состоит из микротрубочек и встроенных в них белков. Благодаря такому строению, сперматозоид может весьма быстро достигать собственной цели. Ядро находится в головке сперматозоида. На внешней стороне этой части мужской половой клетки находится аутосома.

Гаплоидные клетки растений также делятся на две части и называются яйцеклетками и сперматозоидами (спермиями). Яйцеклетки находятся в завязи пестика, а спермии в тычинках или пыльце. При попадании пыльце на рыльце пестика происходит процесс оплодотворения и образуется плод и семена. Низшие растения, а также высшие споровые растения обладают таким свойством как чередование поколений. Одно поколение размножается бесполым путем, а другое половым. Первое поколение именую спорофитом, а второе называют гаметофитом. Для папоротников спорофит представлен растением с большими листьями, а гаметофит представлен небольшим растением в форме сердца.

Гаплоидное число хромосом для каждой клетки может быть своеобразным. У человека гаплоидный набор хромосом равен 23. К неполовым хромосомам относят 22 аутосомы и половые хромосомы.

Гаплоидные клетки образуются в процессе мейоза. В мейозе диплоидная клетки меняется дважды, чтобы образовать четыре гаплоидных дочерних клетки. Перед началом мейотического цикла клетка удваивает собственный набор ДНК, увеличивает массу и количество органелл. Подобная стадия подготовки более известна как интерфаза.

Когда клетка пройдет подготовительную фазу, она вступает в два деления (мейоз I и мейоз II). Каждое деление имеет несколько фаз6 профазу, метафазу, анафазу и телофазу. Первое деление называется редукционным и в конце такого деления образуется две гаплоидные клетки. После этого клетки входят в мейоз II и снова делятся, но уже по типу митоза. В конце второго деления сестринские хроматиды отделяют каждую из четырех клеток с половиной числа хромосом относительно родительской (исходной) клетки.

При половом размножении гаплоидные половые клетки объединяются и становятся диплоидными. Иногда гаплоидные клетки растений, водорослей, грибов реализуют половое размножение. Такими клетками являются споры. Такие организмы, как уже отмечалось ранее, обладают способностью к чередованию поколений. В растениях и водорослях гаплоидные споры развиваются в гаметофитные структуры без оплодотворения.

Гаметофит образует гаметы и его называют гаплоидной фазой жизненного цикла. Диплоидная фаза зависит от образования спорофита.

Таким образом, гаплоидные клетки имеют определенные свойства и помогают создать диплоидный организм, который содержит в себе рекомбинацию генетической информации родителей.

Деление клеток


Хромосомный набор

Хромосомный набор — совокупность хромосом, содержащихся в ядре. В зависимости от хромосомного набора клетки бывают соматическими и половыми.

Соматические и половые клетки

Тип Хромосомный набор Характеристика
Соматические 2n Диплоидны — содержат двойной набор хромосом. В этих клетках хромосомы представлены парами. Хромосомы, принадлежащие к одной паре, называются гомологичными.
Половые 1n Гаплоидны — содержат одинарный набор хромосом. В этих клетках хромосомы представлены в единственном числе и не имеют пары в виде гомологичной хромосомы.

Клеточный цикл

Клеточный цикл (жизненный цикл клетки) — существование клетки от момента её возникновения в результате деления материнской клетки до её собственного деления или смерти. Продолжительность клеточного цикла зависит от типа клетки, её функционального состояния и условий среды. Клеточный цикл включает митотический цикл и период покоя.
В период покоя (G0) клетка выполняет свойственные ей функции и избирает дальнейшую судьбу — погибает либо возвращается в митотический цикл. В непрерывно размножающихся клетках клеточный цикл совпадает с митотическим циклом, а период покоя отсутствует.
Митотический цикл состоит из четырёх периодов: пресинтетического (постмитотического) — G1, синтетического — S, постсинтетического (премитотического) — G2, митоза — М. Первые три периода — это подготовка клетки к делению (интерфаза), четвёртый период — само деление (митоз).

Интерфаза — подготовка клетки к делению — состоит из трёх периодов.

Периоды интерфазы

Периоды Число хромосом и хроматид Процессы
Пресинтетический (G1) 2n2c Увеличивается объем цитоплазмы и количество органоидов, происходит рост клетки после предыдущего деления.
Синтетический (S) 2n4c Происходит удвоение генетического материала (репликация ДНК), синтез белковых молекул, с которыми связывается ДНК, и превращение каждой хромосомы в две хроматиды.
Постсинтетический (G2) 2n4c Усиливаются процессы биосинтеза, происходит деление митохондрий и хлоропластов, удваиваются центриоли.

Деление эукариотических клеток

Основой размножения и индивидуального развития организмов является деление клетки.
Эукариотические клетки имеют три способа деления:

  • амитоз (прямое деление),
  • митоз (непрямое деление),
  • мейоз (редукционное деление).

Амитоз — редкий способ деления клетки, характерный для стареющих или опухолевых клеток. При амитозе ядро делится путём перетяжки и равномерное распределение наследственного материала не обеспечивается. После амитоза клетка не способна вступать в митотическое деление.

Митоз

Митоз — тип клеточного деления, в результате которого дочерние клетки получают генетический материал, идентичный тому, который содержался в материнской клетке. В результате митоза из одной диплоидной клетки образуется две диплоидные, генетически идентичные материнской.

Митоз состоит из четырёх фаз.

Фазы митоза
Фазы Число хромосом и хроматид Процессы
Профаза 2n4c Хромосомы спирализуются, центриоли (у животных клеток) расходятся к полюсам клетки, распадается ядерная оболочка, исчезают ядрышки, и начинает формироваться веретено деления.
Метафаза 2n4c Хромосомы, состоящие из двух хроматид, прикрепляются своими центромерами (первичными перетяжками) к нитям веретена деления. При этом все они располагаются в экваториальной плоскости. Эта структура называется метафазной пластинкой.
Анафаза 2n2c Центромеры делятся, и нити веретена деления растягивают отделившиеся друг от друга хроматиды к противоположным полюсам. Теперь разделённые хроматиды называются дочерними хромосомами.
Телофаза 2n2c Дочерние хромосомы достигают полюсов клетки, деспирализуются, нити веретена деления разрушаются, вокруг хромосом образуется ядерная оболочка, ядрышки восстанавливаются. Два образовавшихся ядра генетически идентичны. После этого следует цитокинез (деление цитоплазмы), в результате которого образуются две дочерние клетки. Органоиды распределяются между ними более или менее равномерно.

Биологическое значение митоза:

  • достигается генетическая стабильность;
  • увеличивается число клеток в организме;
  • происходит рост организма;
  • возможны явления регенерации и бесполого размножения у некоторых организмов.

Мейоз

Мейоз — тип клеточного деления, сопровождающийся редукцией числа хромосом. В результате мейоза из одной диплоидной клетки образуется четыре гаплоидных, генетически отличающиеся от материнской. В ходе мейоза происходит два клеточных деления (первое и второе мейотические деления), причём удвоение числа хромосом происходит только перед первым делением.

Как и митоз, каждое из мейотических делений состоит из четырёх фаз.

Фазы мейоза
Фазы Число хромосом и хроматид Процессы
Профаза I 2n4c Происходят процессы, аналогичные процессам профазы митоза. Кроме того, гомологичные хромосомы, представленные двумя хроматидами, сближаются и «слипаются» друг с другом. Этот процесс называется конъюгацией. При этом происходит обмен участков гомологичных хромосом — кроссинговер (перекрест хромосом), то есть обмен наследственной информацией. После конъюгации гомологичные хромосомы отделяются друг от друга.
Метафаза I 2n4c Происходят процессы, аналогичные процессам метафазы митоза.
Анафаза I 1n2c В отличие от анафазы митоза, центромеры не делятся и к полюсам клетки отходит не по одной хроматиде от каждой хромосомы, а по одной хромосоме, состоящей из двух хроматид и скреплённой общей центромерой.
Телофаза I 1n2c Образуются две клетки с гаплоидным набором.
Интерфаза 1n2c Короткая. Репликации (удвоения) ДНК не происходит и, следовательно, диплоидность не восстанавливается.
Профаза II 1n2c Аналогичны процессам во время митоза.
Метафаза II 1n2c Аналогичны процессам во время митоза.
Анафаза II 1n1c Аналогичны процессам во время митоза.
Телофаза II 1n1c Аналогичны процессам во время митоза.

Биологическое значение мейоза:

  • основа полового размножения;
  • основа комбинативной изменчивости.

Деление прокариотических клеток

У прокариот митоза и мейоза нет. Бактерии размножаются бесполым путём — делением клетки при помощи перетяжек или перегородок, реже почкованием. Этим процессам предшествует удвоение кольцевой молекулы ДНК.
Кроме того, для бактерий характерен половой процесс — конъюгация. При конъюгации по специальному каналу, образующемуся между двумя клетками, фрагмент ДНК одной клетки передаётся другой клетке, то есть изменяется наследственная информация, содержащаяся в ДНК обоих клеток. Поскольку количество бактерий при этом не увеличивается, для корректности используют понятие «половой процесс», но не «половое размножение».

Функции хромосом

Поскольку генетический материал передается от родителей к ребенку, они ответственны за содержание инструкций, которые делают потомство уникальным, в то же время сохраняя черты от родителей. У большинства организмов одна хромосома наследуется от матери, а другая наследуется от отца.

Хромосома количество, строение, функции, типы

Крайне важно, чтобы определенные клетки, такие как репродуктивные, имели правильное количество нитевидных молекул для нормального функционирования.

Структура помогает гарантировать то, что ДНК остается плотно обернутой вокруг белков, иначе молекулы ДНК были бы слишком большими.

Организмы растут, подвергаясь клеточному делению, чтобы произвести новые клетки и заменить старые, изношенные. Во время этого деления ДНК должна оставаться неповрежденной и сохранять равномерное распределение. Они играют роль в этом процессе, позволяя создать точную репликацию ДНК.

Набор хромосом

Существует два типа эукариотических клеток – это гаплоидные и диплоидные. Основное отличие заключается в количестве хромосомных наборов, обнаруженных в ядре.

Хромосома количество, строение, функции, типы

Гаплоидные клетки – это клетки, которые содержат только один полный хромосомный набор. Наиболее распространенным типом гаплоидных клеток являются гаметы или половые клетки. Гаплоидные клетки продуцируются мейозом. Это генетически разнообразные клетки, которые используются при половом размножении.

Когда гаплоидные клетки от родительских доноров собираются и оплодотворяются, потомство имеет полный набор и становится диплоидной клеткой.

Диплоидные клетки имеют две гомологичные (парные) копии каждой нитевидной молекулы, унаследованные от матери и отца. Все млекопитающие являются организмами этого типа, за исключением нескольких видов.

Диплоидные клетки обозначены как 2n = 2x, а гаплоидные клетки обозначены как n, где n – количество нитевидных молекул, а x – число моноплоидов.

Количество, присутствующее в организме, помогает отличить один вид от другого. Например, антилопа, как и человек, имеет 46, а у макаки 42 хромосомы. 48 хромосом имеют гориллы, а также картофель.

Но у кого больше всего нитевидных молекул? Ophioglossum reticulatum из семейства папоротниковых имеет их 1260. Есть даже те, у кого 2 хромосомы – это муравьи и аскариды. Ясно, что количество не коррелирует со сложностью организма.

Фактически количество нитевидных молекул у животных или растений определяется случайно. Количество может уменьшаться в результате слияния или увеличиваться в результате полиплоидии.

Количество хромосом у человека

Интересно, сколько пар хромосом у человека? Нормальный набор нитевидных молекул у людей имеет 23 пары, что в сумме составляет 46 штук.

Хромосома количество, строение, функции, типы

Исключением являются половые клетки: яйцеклетки и сперматозоиды. У них в наличии лишь одна нитеобразная структура из каждой пары. Каждая из них может иметь от сотен до тысяч генов.

Женщина обычно владеет двумя X-хромосомами (XX), а у мужчин должно быть по одной X и Y-хромосом (XY). Именно поэтому Y считаются мужскими, а Х – это женские.

Болезни генетики, связанные с хромосомами

Аномалии могут влиять на любую нитевидную молекулу, включая и половые.

Хромосома количество, строение, функции, типы

Значительные аномалии можно увидеть под микроскопом. Такой тест называется кариотипирование. Меньшие хромосомные аномалии могут быть идентифицированы с помощью специального генетического теста, который сканирует хромосомы человека на наличие отсутствующих или лишних частей.

Числовые отклонения появляются, если в набор добавляется одна или несколько дополнительных нитевидных молекул (появление одной называется трисомия, а двух копий – тетрасомия) или их недостача (известна как моносомия).

Трисомия может поражать любую пару, но более распространенными являются ошибки в 21 (синдром Дауна), в 13, а также в 18 парах. Эти аномалии видны с помощью микроскопа при кариотипировании.

Чем больший возраст у беременной женщины, тем больше вероятность возникновения у плода каких-то аномалий. Когда мужчина становится старше, вероятность зачатия ребенка с аномалией лишь незначительно увеличивается.

Структурные нарушения происходят, когда есть ошибки в строении какой-то части хромосомы. Бывает, когда часть одной создает неправильное соединение с другой нитевидной молекулой (такое называется транслокацией).

Хромосома количество, строение, функции, типы

Порой случается так, что части вообще не существует (это называется делеция) или они дублируются.

Одни нарушения являются источником гибели эмбриона еще до его рождения. А некоторые отклонения приводят к проблемам, таким как низкий рост, судороги, отсталость в развитии или проблемы с сердцем.

Незначительные мутации происходят в конкретном гене. Такие аномалии не оказывают влияние на строение и, следовательно, их нельзя увидеть во время проведения анализа кариотипа или другого теста.

Одни изменения в гене не сопровождаются проблемами, а другие могут вызвать мало или только легкие отклонения. Но некоторые мутации приводят к серьезным расстройствам, таким как серповидноклеточная анемия, гипертихоз и мышечная дистрофия.

Благодаря стремительному развитию медицины все чаще ученые и медики устанавливают конкретные причины заболеваний человека, которые основаны на генетике. Но остается загадкой, почему возникает множество мутаций.

Предполагается, что значительная часть заболеваний появляется самопроизвольно. Некоторые факторы в экологии и внешнем мире способны повредить и породить аномалии в генах. Такие факторы называются мутагенами.

Например, такие мутагены, как радиационное излучение, ультрафиолетовое излучение, лекарства, и химические субстанции, могут привести к некоторым врожденным дефектам или даже к раку.

Что такое хромосомы

Хромосома количество, строение, функции, типы

Хромосома количество, строение, функции, типы

Хромосомы – это отдельные цепи ДНК (дезоксирибонуклеиновой кислоты), которые свернуты в двойную спираль и образуют плотные нитевидные кусочки. Поэтому их еще называют нитевидными молекулами.

Интерфаза

Как и в митозе, перед делением проходит подготовительная стадия – интерфаза. В ней запускаются важнейшие процессы для того, чтобы клетка могла начать клеточное деление. Клетка синтезирует органические вещества и молекулы АТФ, чтобы во время мейоза ей хватило энергии и строительного материала, удваивает некоторые органоиды и молекулы ДНК.

Вот что именно происходит во время интерфазы.

  • Синтез АТФ. Энергии должно хватить на весь процесс деления, а он непростой и достаточно долгий.
  • Ускорение метаболизма — синтез и накопление органических веществ, будущего строительного материала для новых клеток
  • Репликация ДНК. Образование двух молекул ДНК из одной, каждая из этих молекул потом уйдет в дочернюю клетку. Удвоение ДНК – центральный процесс интерфазы, теперь в каждой хромосоме располагается по две молекулы, а набор становится 2n4c.
  • Удвоение органоидов. После деления каждая клетка должна получить полный набор органоидов для оптимального функционирования.

После того, как клетка совершит все ритуалы для подготовки, она может приступать к мейозу.

Если хотите лучше понять клеточную теорию и изучить не только мейоз для ЕГЭ по биологии, но и остальные темы, приходите учиться в MAXIMUM! Записывайтесь на консультацию — вы сможете пройти диагностику по выбранным предметам ЕГЭ, поставить цели и составить стратегию подготовки, чтобы получить на экзамене высокие баллы. Все это абсолютно бесплатно!

Первое деление

Чем мейоз функционально отличается от митоза? Дело в том, что в мейозе происходит не одно деление, а два. Их так и называют: первое и второе деление мейоза. В каждом делении по 4 фазы. Тут нам повезлоЕ называются эти фазы так же, как и фазы митоза, поэтому сложностей с ними обычно не возникает. Между делениями не проходит интерфаза, клетка может немного «отдохнуть», но удвоения ДНК не происходит.

Рассмотрим фазы каждого деления подробнее.

Профаза первого деления

Начинается мейоз практически так же, как и митоз. Хромосомы спирализуются, ядро и ядерная оболочка распадается, центриоли клеточного центра расходятся к полюсам и начинают формировать веретено деления. А вот дальше начинается самое интересное – хромосомы встречают свою гомологичную пару.

Что же такое гомологичные хромосомы? Все мы знаем, что половину хромосом при оплодотворении получаем от материнского организма, а другую половину от отцовского. Так вот, гомологичные хромосомы сходны по строению, размеру и несут одинаковый набор генов (но, возможно, разные аллели). Одну из таких хромосом организм получает от матери, а вторую от отца. Такие хромосомы подходят близко друг к другу, это называется конъюгация, и могут даже обменяться участками – это кроссинговер.

После этого хромосомы хаотично располагаются в цитоплазме. При этом набор хромосом и ДНК по сравнению с интерфазой не меняется (меняется только генетическая информация), а остается таким же, как в интерфазе – 2n4c.

Метафаза первого деления

Помните, что метафаза — самая статичная и красивая из всех фаз? Хромосомы выстраиваются по экватору гомологичными парами, друг напротив друга. Нити веретена деления прикрепляются к центромере хромосомы, которая расположена ближе к тому полюсу, где находится центриоль. Таким образом, каждую хромосому нить фиксирует только одной стороны. Набор остается 2n4c.

Анафаза первого деления

Нити веретена деления сокращаются и растаскивают к полюсам по одной из пары гомологичных двухроматидных хромосом. Хромосомы расходятся к полюсам, а набор в клетке не меняется, так и остается 2n4c.

Телофаза первого деления

Дальше клетка действует, как будто по инерции. Она продолжает работать по тому же алгоритму, что и в митозе. Поэтому в первой телофазе хромосомы деконденсируются, формируются ядра и ядерные оболочки, клетка делится на две, при этом набор в каждой из новых клеток тоже делится пополам и становится 1n2c. С этим набором клетка переходит во второе деление.

Второе деление

Хочу обратить ваше внимание на то, что дальше процессы деления будут проходить в двух получившихся клетках параллельно. Мы, конечно, будем говорить только про одну из них, но в голове держите обе. Второе деление мейоза очень напоминает митоз (можно даже сказать о том, что оно его повторяет). Разница только в наборах и в том, что в профазе 1 между хромосомами произошел обмен генетической информацией.

Гаплоидные клетки: процесс образование и количество хромосом

Профаза второго деления

Хромосомы спирализуются, растворяются ядро и ядерная оболочка. Так как хромосомы больше ничто не удерживает на месте, они хаотично располагаются по всей клетке. Центриоли клеточного центра расходятся к полюсам и начинают формировать нити веретена деления. Набор при этом остается таким же, как в телофазе 1 – n2c.

Метафаза второго деления

Хромосомы выстраиваются по экватору, они потеряли свои гомологичные пары в первом делении, поэтому теперь выстраиваются в линию — как в митозе. Нити веретена деления прикрепляются к центромерам хромосом с каждого полюса, выходит так, что каждую хромосому с двух сторон фиксирует веретено деления. События, происходящие в эту фазу, не приводят к изменению хромосомного набора, он остается n2c.

Анафаза второго деления

Нити веретена деления сокращаются и разрывают двухроматидные хромосомы на две однохроматидные сестринские хромосомы, каждая из которых несет по одной молекуле ДНК. Потом эти хромосомы растаскивают по полюсам. Таким образом, из каждой хромосомы образуется две новые, количество ДНК при этом не меняется. Просто раньше в каждой из хромосом было по две молекулы ДНК, а теперь по одной. Набор 2n2c.

Телофаза второго деления

Хорошо, что в телофазах события всегда одинаковые: деспирализация хромосом, формирование ядер и деление клетки на две дочерние. Но мы помним, что во второе деление вступило две клетки, каждая из которых поделилась еще на две. Так что в процессе мейоза образуется 4 гаплоидные клетки с набором nc, причем эти клетки генетически отличаются друг от друга и от вступившей в деление материнской клетки.

Гаплоидные клетки: процесс образование и количество хромосом

Зачем нужен мейоз?

Теперь, когда мы вспомнили, как именно проходит процесс мейоза, пришло время ответить еще на один вопрос. Зачем он проходит? Это важно понимать, чтобы лучше справляться с заданиями на мейоз в ЕГЭ.

  • В результате мейоза образуются половые клетки, а, следовательно, основное значение мейоза – это половое размножение.
  • Мейоз – редукционное деление, при этом клетки уменьшают свой набор хромосом вдвое. Благодаря редукции поддерживается постоянство числа хромосом в поколениях. Только представьте, если бы этот процесс проходил иначе или не проходил вовсе, набор хромосом из поколения в поколение увеличивался бы вдвое. Например, у человека при оплодотворении сперматозоид, имеющий 46 хромосом, сливался бы с яйцеклеткой с таким же набором. Зародыш получил бы 92 хромосомы, а это только первое поколение!
  • В профазе первого деления мейоза происходит кроссинговер – обмен участками гомологичных хромосом, после этого каждая из хромосом несет уникальную генетическую информацию. Это приводит к увеличению генетического разнообразия и комбинативной изменчивости.

Задания на мейоз в ЕГЭ по биологии

В экзамене достаточно много вопросов о делении клетки, они встречаются и в первой, и во второй части. Каждое из них может принести от одного до трех первичных баллов.

Пример 1

В ядрах клеток слизистой оболочки кишечника позвоночного животного 36 хромосом. Определите число молекул ДНК в анафазе второго деления мейоза при образовании гамет? В ответ запишите только соответствующее число.

Решение. В анафазе второго деления клетки диплоидный набор хромосом и ДНК – 2n2c, так как к полюсам расходятся двухроматидные хромосомы. В клетках слизистой оболочки набор тоже диплоидный, клетка соматическая. Число молекул ДНК совпадает с диплоидным набором и равняется 36.

Ответ: 36.

Пример 2

Установите последовательность процессов, происходящих в ходе мейоза.

  • расположение пар гомологичных хромосом по экватору
  • расхождение гомологичных хромосом
  • расхождение сестринских хроматид
  • образование гаплоидных ядер с однохроматидными хромосомами
  • конъюгация

Решение. Один из вариантов решения, разобрать в какой из стадий происходит каждый из процессов, а потом расставить фазы деления по местам.

  • Гомологичные хромосомы располагаются парами по экватору в первую метафазу и образуют экваториальную пластинку.
  • Расхождение гомологичных, а значит двухроматидных хромосом, к полюсам происходит в анафазу первого деления.
  • Сестринские хроматиды, а значит однохроматидные, расходятся к полюсам в анафазу второго деления.
  • Гаплоидные ядра с однохроматидными хромосомами имеют набор nc, перед нами телофаза 2.
  • Последний вариант «конъюгация» — это сближение гомологичных хромосом с образованием бивалента и происходит этот процесс в профазе первого деления.

Дальше вспоминаем последовательность фаз, для этого можно использовать слово «ПРИМАТ». Буквы в нем расположены в том же порядке, как и названия фаз во время деления.

Ответ: 51234.

Пример 3

Соматические клетки козы содержат 60 хромосом. Как изменится число хромосом и молекул ДНК в ядре при гаметогенезе перед началом деления и в конце телофазы мейоза I? Объясните результаты в каждом случае.

Решение.

  • В соматических клетках набор 2n2c- 60 хромосом и 60 молекул ДНК.
  • В интерфазе, перед началом деления проходит репликация ДНК, набор 2n4с- 60 хромосом и 120 молекул ДНК
  • В конце телофазы мейоза I набор 1n2c- 30 хромосом и 60 молекул ДНК, так как в анафазе I к полюсам расходятся двухроматидные хромосомы, а в телофазе I клетка делится на две клетки с гаплоидным набором двухроматидных хромосом.

Как видите, задания на мейоз в ЕГЭ по биологии вполне реально решить! Немного практики — и заветные баллы у вас в кармане. Если хотите разобраться в остальных темах, обязательно обратите внимание на курсы MAXIMUM. Приходите к нам на бесплатную консультацию по подготовке к ЕГЭ — чем раньше приступите к подготовке, тем больше будет времени, чтобы найти все слабые места и проработать их. Записывайтесь и начните путь к высоким баллам ЕГЭ уже сейчас!

Понятие хромосомы

Ядро эукариотической клетки содержит несколько видов составляющих, одной из которых является нуклеопротеидная структура, называемая хромосомой. Теория о наследственной информации впервые была выдвинута еще в XIX веке, но, опираясь на фактические данные, полностью сформировалась лишь спустя столетие,.

С помощью ДНК происходит хранение, реализация и передача наследственной информации. Различить хромосомы под микроскопом возможно только во время деления клетки. Совокупность всех структурно-функциональных единиц, содержащихся в клетке, называется кариотипом.

Нуклеопротеидные структуры, хранящие наследственную информацию, у эукариотов расположены в ядре, а также в митохондриях и пластидах; у прокариотов замкнутая в кольцо молекула ДНК располагается в так называемой зоне нуклеоида. У вирусов, единственных в своем роде, роль носителя генетической информации может выполнять как ДНК, так и РНК (рибонуклеиновая кислота), расположенные в белковых оболочках — капсидах.

Обычно генетическая информация в клетке содержится в единичном экземпляре, это состояние называют гаплоидным набором. При делении клетки ДНК реплицируется, то есть удваивается, чтобы каждая молодая клетка получила полноценный генетический набор. Данное состояние хромосом называется диплоидным. Реже, при формировании половых клеток (яйцеклеток и сперматозоидов), при образовании спор и конидиев в жизненных циклах низших растений и грибов, а также при генетических аномалиях в клетке может находится учетвереннвй набор генетической информации — тетраплоидный.

Диплоидный набор хромосом — это двойной кариотип, в котором элементы разделены на пары по сходным признакам. Такой набор наблюдается в соматических клетках и зиготах.

В человеческих клетках содержится по 46 хромосом, которые разделяются на 23 пары со своим «двойником» по длине и толщине. Но 45-я и 46-я единицы отличаются от других тем, что представляют собой половые хромосомы, определенное сочетание которых влияет на пол будущего человека:

  • пара одинаковых единиц- XX — приведет к рождению ребенка женского пола;
  • две разные единицы — XY — к рождению мальчика.

Остальные структуры называются аутосомами.

Гаплоидный хромосомный набор представляет собой одинарный набор структурно-функциональных единиц, которые отличаются друг от друга по размеру. В гаплоидных кариотипах содержится 22 аутосомы и 1 половая структура. Ядра с одинарным набором элементом имеют растения, водоросли и грибы.

Диплоидный и гаплоидный кариотипы могут существовать в одно время. Такое явление наблюдается при половых процессах. В этот период происходит чередование фаз гаплоидного и диплоидного наборов: с делением полного набора происходит образование одинарного кариотипа, а затем происходит слияние пары одинарных наборов, которые преобразуются в диплоидный кариотип.

Возможные нарушения в кариотипе

В период развития на уровне клеток имеет возможны сбои и нарушения в работе хромосом. При изменениях в хромосомных наборах у человека возникают генетические заболевания. Известными болезнями с нарушением кариотипа являются:

  • Синдром Дауна. Заболевание характеризуется сбоем в 21-й паре структурно-функциональных единиц, к которым примыкает абсолютно такая же дополнительная хромосома. Гомологичный элемент является лишним и приводит к аномалии, которую называют трисомией. С нарушением 21-й пары диплоидного набора плод может отстать в развитии и погибнуть. Если ребенок рождается, то нарушение в клетках приведет к сокращению будущей жизни малыша. В умственном развитии он будет отставать. К сожалению, этот синдром неизлечим.
  • Синдром Шерешевского-Тернера. При этой болезни отсутствует одна из половых структур в 23-й паре кариотипа. У людей с этим синдромом наблюдаются характерные аномалии в физическом развитии, низкорослость и половой инфантилизм.
  • Синдром Эдвардса. Трисомия 18-й хромосомы, сформировавшаяся до оплодотворения, приводит к хромосомному заболеванию, характеризующемуся совокупностью пороков развития.
  • Синдром Патау. Тяжелому врожденному заболеванию свойственно число деформаций тела, которые происходят из-за появления в клетках дополнительной 13-й хромосомы. Обычно малыши с таким синдромом проживают всего несколько недель, но отмечены случаи, когда родившиеся с неизлечимым пороком дети проживали несколько лет.
  • Синдром Клайнфельтера. Наследственная болезнь, наблюдаемая у мужского пола, может проявляться полисомией в разных вариантах, но чаще всего происходит присоединение второй X-элемента к паре XY, вследствие чего образуется схема XXY. Наличие аномалии в хромосомном наборе приводит к нарушениям в половой системе и умственном развитии, а также к системным заболеваниям человеческого организма.

Поскольку ученые еще не нашли способы защиты клеток от нарушений в кариотипах, хромосомные изменения приводят к неизлечимым болезням, при которых наблюдаются низкая степень жизнеспособности, отклонения в умственном и половом развитии, задержка роста.

С помощью многочисленных исследований ученые установили, что на изменения в хромосомных наборах воздействует влияние экологии, плохой наследственности, дефицита сна и неправильного образа жизни. Но нарушения могут встречаться и у людей, ведущих абсолютно правильный образ жизни и не страдающих никакими заболеваниями. На данный момент люди не могут влиять на изменения в кариотипах.

Гаплоидное числоГаплоидные клетки: процесс образование и количество хромосом 2

Гаплоидное число — это количество хромосом в ядре клетки, которое составляет один набор хромосом. Это число обычно обозначается как n, где n равняется количеству хромосом. Для разных организмов, гаплоидное число будет отличатся. У людей гаплоидное число выражается как n=23.

Гаплоидные клетки человека имеют 1 набор из 23 хромосом:

  • Неполовые хромосомы: 22 аутосомы.
  • Половые хромосомы: 1 гоносома.

Диплоидные клетки людей содержат 23 пары или 46 хромосом:

  • Неполовые хромосомы: 22 пары, состоящие из 44 аутосом.
  • Половые хромосомы: 1 пара, включающая 2 гоносомы.

Репродукция гаплоидной клетки

Основная статья: Краткая характеристика и схемы фаз мейоза.

Гаплоидные клетки продуцируются в процессе мейоза. В мейозе диплоидная клетка делится дважды, чтобы образовать четыре гаплоидных дочерних клетки. До начала мейотического цикла, клетка реплицирует ДНК, увеличивает свою массу и количество органелл в стадии, известной как интерфаза.

Когда клетка делится посредством мейоза, она проходит два этапа (мейоз I и мейоз II) профазы, метафазы, анафазы и телофазы. В конце мейоза I клетка делится на две. Гомологичные хромосомы разделены, однако сестринские хроматиды остаются вместе. Затем клетки входят в мейоз II и снова делятся.

В конце мейоза II сестринские хроматиды отделяют каждую из четырех клеток с половиной числа хромосом относительно родительской (исходной) клетки. В процессе полового размножения гаплоидные половые клетки объединяются при оплодотворении и становятся диплоидными клетками.

В организмах, таких как растения, водоросли и грибы, бесполое размножение осуществляется при помощи продуцирования гаплоидных спор.

Эти организмы имеют жизненные циклы, которые могут чередоваться между гаплоидной и диплоидной фазами. Такой тип жизненного цикла известен как чередование поколений. В растениях и водорослях гаплоидные споры развиваются в гаметофитные структуры без оплодотворения.

Гаметофит производит гаметы и считается гаплоидной фазой в жизненном цикле. Диплоидная фаза цикла состоит в образовании спорофитов. Спорофиты — диплоидные структуры, которые развиваются из оплодотворенных половых клеток.

Не нашли, то что искали? Используйте форму поиска по сайту

Понравилась статья? Оставь комментарий и поделись с друзьями


Поделитесь в соц.сетях:

Оцените статью:

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (Пока оценок нет)
Загрузка...

Добавить комментарий